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1 INTRODUCTION 

 This paper presents a theoretical investigation of the second-order steady horizontal and vertical drift forces acting 
on a vertical porous cylindrical body which is exposed to the action of regular plane waves propagating in finite depth 
waters. The examined body consists of a truncated cylinder with an upper porous sidewall and an inner cylindrical 
column. Porous- surfaced bodies constitute an important class of maritime structures since they can reduce the 
influence of wave-body interaction through pores on the body surface. Thus, a porous sidewall surrounding an inner 
column of a truncated cylindrical body can be used to effectively reduce both the transmitted and reflected wave trains. 
In past decades, numerous works have been presented concerning the behavior of porous bodies in waves. To raise 
some of them as examples, Teng et al., (2001) studied the wave diffraction from a bottom seated cylinder with porous 
upper wall and an inner column, whereas Ning et al., (2017) extended the previous work for a floating truncated 
cylinder with an upper sidewall. Other similar studies on concentric porous cylinder systems are those from Wang & 
Ren, (1994); Song & Tao, (2007); Liu et al., (2018). 

2 THEORETICAL BACKGROUND 

 We consider a free floating truncated cylindrical body with an upper porous sidewall as depicted in Fig. 1. The 
body’s outer and inner radius, draught of the impermeable cylindrical body, draught of the upper sidewall and water 
depth are denoted by the symbols α, b, hw-h, d-hw, d, respectively. The fluid domain is divided into three regions, 
region I (𝑟 ≥ 𝑎; 0 ≤ 𝑧 ≤ 𝑑); region II (𝑏 ≤ 𝑟 ≤ 𝛼; ℎ௪ ≤ 𝑧 ≤ 𝑑); and region III (0 ≤ 𝑟 ≤ 𝛼; 0 ≤ 𝑧 ≤ ℎ) and it is 
assumed incompressible, inviscid and its motion irrotational. A cylindrical coordinate system (𝑟, 𝜃, 𝑧) is assumed with 
origin located at the center of the cylinder on the sea bottom. The flow is governed by the velocity potential 𝛷, 𝑘 =𝐼, 𝐼𝐼, 𝐼𝐼𝐼, which can be decomposed into the diffraction potential 𝜑  and the motion–radiation potential 𝜑, induced 
around the body due to its forced oscillation in the j-th mode of motion, j=1,3,5 with unit velocity amplitude, i.e.: 𝛷(𝑟, 𝜃, 𝑧; 𝑡) = 𝑅𝑒[𝜑(𝑟, 𝜃, 𝑧)𝑒ିఠ௧] = 𝑅𝑒 ቌ𝜑 (𝑟, 𝜃, 𝑧) +  𝑥ሶ𝜑(𝑟, 𝜃, 𝑧)ୀଵ,ଷ,ହ ቍ 𝑒ିఠ௧                                        (1) 

In Eq. (1)  𝑥ሶ  denotes the complex velocity amplitude of the body motion in the j-th direction. It holds 𝜑ூ = 𝜑ூ +𝜑ூ , where 𝜑ூ  is the velocity potential of the incident harmonic waves and 𝜑ூ  the scattered potential around the body.   

 The complex velocity potentials 𝜑, 𝑗 = 1,3,5, 𝐷; 𝑘 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 have to fulfill the Laplace differential equation in 
the entire fluid domain and the proper boundary conditions on the free water surface and the seabed. Furthermore,  𝜑ூ, 𝑗 = 1,3,5,7  have to satisfy an appropriate radiation condition as 𝑟 → ∞. Also, the following kinematic conditions 
on the horizontal and vertical boundaries of the body (i.e., porous and impermeable surfaces) should be satisfied, i.e.    𝜕𝜑ூூ𝜕𝑧 = 𝑉, 𝑧 = ℎ௪;  𝑏 ≤ 𝑟 ≤ 𝛼;  and 𝜕𝜑ூூூ𝜕𝑧 = 𝑉, 𝑧 = ℎ; 0 ≤ 𝑟 ≤ 𝛼                                                                                    (2) 𝜕𝜑ூூ𝜕𝑟 = 𝑢, 𝑟 = 𝑏; ℎ௪ ≤ 𝑧 ≤ 𝑑;  and 𝜕𝜑ூ𝜕𝑧 = 𝑢, 𝑟 = 𝑎; ℎ ≤ 𝑟 ≤ ℎ௪                                                                                 (3𝑎) 



𝜕𝜑ூூ𝜕𝑟 = 𝑢 + 𝑖𝑘𝐺൫𝜑ூூ − 𝜑ூ൯, 𝑟 = 𝛼; ℎ௪ ≤ 𝑧 ≤ 𝑑                                                                                                                  (3𝑏) 

In Eq. (2) 𝑉 = 𝑉ଵ = 0; 𝑉ଷ = 1; 𝑉ହ = −𝑟𝑐𝑜𝑠𝜃, whereas in Eqs. (3a, 3b) 𝑢 = 𝑢ଷ = 0; 𝑢ଵ = 1; 𝑢ହ = 𝑧 − 𝑒. In this 
formulation the body’s forced pitch motion (j=5) is performed about a horizontal axis lying at the distance z=e from 
the seabed. Also, in Eq. (3b) k denotes the wave number and G a dimensionless porous coefficient (Sankar & Bora, 
2020).  
 Moreover, both the velocity potentials and their derivatives must be continuous at the vertical boundaries of 
neighboring ring elements. 

 
Fig. 1. 3-D representation of the examined truncated cylindrical body  

 Applying the method of separation of variables in the Laplace equation both the diffraction and the radiation 
potentials can be expressed as a superposition of eigenfunction solutions satisfying the corresponding kinematic 
conditions at the body’s surface boundaries. Detailed expressions for the diffraction and radiation potentials in each 
type can be found in Kokkinowrachos et al., (1986). Indicatively, here the relevant expressions for the potential 
functions in the II fluid domain (𝑏 ≤ 𝑟 ≤ 𝛼; ℎ௪ ≤ 𝑧 ≤ 𝑑) are given. It holds: 𝜑ூூ = − 𝑖𝜔𝐻2  ε𝑖𝛹ூூ (𝑟, 𝑧) cos(𝑚𝜃)ஶ

ୀ ; and 𝜑ூூ = 𝛹ூூ (𝑟, 𝑧) cos(𝑚𝜃) , 𝑗 = 1,3,5                                                 (4) 

where, ω is the wave frequency; H the wave height; and ε the Neumann’s symbol. The unknown coefficients 𝛹ூூ , 𝛹ூூ  can be written as:  1𝛿 𝛹ூூ (𝑟, 𝑧) = 𝑔ூூ (𝑟, 𝑧) + (𝑅ூூ (𝑟)𝐹ூூ + 𝑅∗ூூ(𝑟)𝐹∗ூூ)ஶ
ୀ 𝑍(𝑧 − ℎ௪);  𝑗 = 1,3,5, 𝐷                                                     (5) 

Where:  𝛿 = 𝛿ଵ = 𝛿ଷ = 𝑑; 𝛿ହ = 𝑑ଶ; and 𝑔ூூ (𝑟, 𝑧) = 𝑔ଵଵூூ (𝑟, 𝑧) = 0; 𝑔ଷூூ (𝑟, 𝑧) = ௭ௗ − 1 + ఠమ ;  𝑔ହଵூூ (𝑟, 𝑧) =− ௗమ [(𝑧 − 𝑑) + ఠమ] 
In Eq. (5) the 𝐹ூூ , 𝐹∗ூூ are the unknown Fourier series expressions; 𝑍 are orthonormal functions defined by: 𝑍(𝑧 − ℎ௪) = 12 ൬1 + sin (2𝑎(𝑑 − ℎ௪))2𝑎(𝑑 − ℎ௪) ൰൨ିଵ/ଶ cos൫𝑎(𝑧 − ℎ௪)൯                                                                                     (6) 

whereas 𝑅ூூ , 𝑅∗ூூ can be written in the form: 𝑅ூூ = 𝐼(𝑎𝑟)𝐾(𝑎𝑏) − 𝐼(𝑎𝑏)𝐾(𝑎𝑟)𝐼(𝑎𝑎)𝐾(𝑎𝑏) − 𝐼(𝑎𝑏)𝐾(𝑎𝑎) ; 𝑅∗ூூ = 𝐼(𝑎𝑎)𝐾(𝑎𝑟) − 𝐼(𝑎𝑟)𝐾(𝑎𝑎)𝐼(𝑎𝑎)𝐾(𝑎𝑏) − 𝐼(𝑎𝑏)𝐾(𝑎𝑎)                                       (7) 

Here, 𝐼, 𝐾 are the m-th order modified Bessel function of first and second kind, respectively. The 𝑎 terms are roots 
of the equations: 𝜔ଶ + 𝑔𝑎 tan൫𝑎(𝑑 − ℎ௪)൯ = 0, with the imaginary one 𝑎 = −𝑖𝑘 considered as first. 

3 MEAN DRIFT FORCES 

 Two principally different approaches have been presented in the literature for the determination of the mean drift 
forces, namely the momentum principle and the direct integration method. The latter method is applied herein, based 
on the direct integration of the fluid pressure over the instantaneous wetted surface of the body, keeping all relevant 



terms up to second order. This method which has been introduced by Pinkster & VanOortmersen (1977), has been 
elaborated and extended by several investigators adding some missing terms in their analysis concerning the vertical 
drift force components and the pitch and roll drift moments (Molin, 1983; Papanikolaou & Zaraphonitis, 1987). 
Analytical presentation of the mean drift forces acting on a truncated cylindrical body using the direct integration 
method can be found in Konispoliatis & Mavrakos (2014, 2020). 

4 NUMERICAL RESULTS 

 This subsection is dedicated to the presentation of the horizontal and vertical mean drift forces acting on a 
truncated cylinder with an upper porous sidewall and an inner cylindrical column fixed to the incoming wave trains. 
The examined body consists of an outer radius α and inner radius b=0.25α, whereas the distance between the bottom 
of the body and the seabed is h=3.75α. The water depth equals to d=6.25α and the distance of the bottom of the porous 
sidewall from the seabed is hw=4.25α (see Fig. 1). Several real and complex dimensionless porous coefficients are 
examined, i.e., G=0; 1.0; 3.0; 10.0 and G=0.5+i1.0; 1.0+i1.0; 3.0+i1.0; 10.0+i1.0 It should be noted that for G=0 the 
sidewall is assumed impermeable (i.e., no water is getting inside or outside the upper part of the body), as well as its 
thickness is considered negligible. Furthermore, for G>>0 the sidewall is considered fully permeable. The presented 
numerical results (i.e., horizontal, and vertical mean drift forces) are normalized by the factors πρgα(Η/2)2 and                  
-πρgα2(Η/2)2/(2d), respectively, where ρ is the water density and g the gravity acceleration.    

  
Fig. 2. Horizontal mean drift forces on the truncated 
cylindrical body for real porous coefficients 

Fig. 3. Horizontal mean drift forces on the truncated 
cylindrical body for complex porous coefficients

 
Fig. 4. Vertical mean drift forces on the truncated 
cylindrical body for real porous coefficients 

Fig. 5. Vertical mean drift forces on the truncated 
cylindrical body for complex porous coefficients



5 CONCLUSIONS 

Based on the presented theoretical formulation the horizontal and vertical mean drift forces acting on a vertical porous 
cylindrical body have been evaluated. By comparing the results for different values of porous coefficients the 
following conclusions can be drawn: 
- The results of the mean drift forces keep a similar trend for a real or a complex porous coefficient. However, the 

imaginary part of G causes a decrease of the values of the horizontal and vertical drift forces. Physically, the real 
and the imaginary part of the porous coefficient represent the drag term and the inertia term, which lead to the wave 
energy loss and the phase change, respectively (Teng, B. et al., 2001);      

- The presented numerical results were obtained applying l=50 terms for the II ring element, whereas 40 and 100 
terms were used for I and III ring elements, respectively. Also, the considered modes equal to m=7. Nevertheless, 
this study will be further continued by examining how the increase of the latter quantities affects the accuracy of 
the mean drift forces.       
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